单选题 (共 3 题 ),每题只有一个选项正确
函数 $f(x)=x e^x$ 的带有皮亚诺型余项的 $n$ 阶麦克劳林公式为 ( ).
$\text{A.}$ $x e^x=x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+o\left(x^n\right)$
$\text{B.}$ $x e^x=x+x^2+\frac{x^3}{2!}+\cdots+\frac{x^n}{(n-1)!}+o\left(x^n\right)$
$\text{C.}$ $x e^x=x+\frac{x^2}{2}+\cdots+\frac{x^n}{n}+o\left(x^n\right)$
$\text{D.}$ $x e^x=x+x^2+\frac{x^3}{2}+\cdots+\frac{x^n}{n-1}+o\left(x^n\right)$
利用泰勒公式,当 $x \rightarrow 0$ 时,$f(x)=1-\cos x \cos 2 x \cos 3 x$ 的等价无穷小为( )。
$\text{A.}$ $5 x^2$
$\text{B.}$ $7 x^2$
$\text{C.}$ $-5 x^2$
$\text{D.}$ $-7 x^2$
设 $f(x), g(x)$ 是恒大于零的可导函数,且 $f^{\prime}(x) g(x)-f(x) g^{\prime}(x) < 0$ ,则当 $a < x < b$ 时,下列结论成立的是( )
$\text{A.}$ $f(x) g(b)>f(b) g(x)$
$\text{B.}$ $f(x) g(a)>f(a) g(x)$
$\text{C.}$ $f(x) g(x)>f(b) g(b)$
$\text{D.}$ $f(x) g(x)>f(a) g(a)$