单选题 (共 3 题 ),每题只有一个选项正确
设在 $[0,1]$ 上 $f^{\prime \prime}(x)>0$, 则 $f^{\prime}(0), f^{\prime}(1), f(1)-f(0)$ 或 $f(0)-f(1)$ 的大小顺序是
$\text{A.}$ $f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)$.
$\text{B.}$ $f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)$.
$\text{C.}$ $f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)$.
$\text{D.}$ $f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)$.
曲线 $y=x(x-1)(2-x)$ 与 $x$ 轴所围图形的面积可表示为
$\text{A.}$ $-\int_0^2 x(x-1)(2-x) \mathrm{d} x$
$\text{B.}$ $\int_0^1 x(x-1)(2-x) \mathrm{d} x-\int_1^2 x(x-1)(2-x) \mathrm{d} x$
$\text{C.}$ $-\int_0^1 x(x-1)(2-x) \mathrm{d} x+\int_1^2 x(x-1)(2-x) \mathrm{d} x$
$\text{D.}$ $\int_0^2 x(x-1)(2-x) \mathrm{d} x$