一、单选题 (共 5 题,每小题 5 分,共 50 分,每题只有一个选项正确)
曲面 $x^2-4 y^2+2 z^2=6$ 上点 $(2,2,3)$ 处的法线方程为
$\text{A.}$ $\frac{x-2}{-1}=\frac{y-2}{-4}=\frac{z-3}{3}$
$\text{B.}$ $\frac{x-2}{1}=\frac{y-2}{-4}=\frac{z-3}{3}$
$\text{C.}$ $\frac{x-2}{-1}=\frac{y-2}{4}=\frac{z-3}{3}$
$\text{D.}$ $\frac{x-2}{1}=\frac{y-2}{4}=\frac{z-3}{3}$
设 $D$ 是矩形域: $0 \leqslant x \leqslant \frac{\pi}{4},-1 \leqslant y \leqslant 1$,则 $\iint_D x \cos (2 x y) d \sigma=$.
$\text{A.}$ 0
$\text{B.}$ $-\frac{1}{2}$
$\text{C.}$ $\frac{1}{2}$
$\text{D.}$ $\frac{1}{4}$
设 $L$ 是以 $A(-1,0), B(-3,2)$ 及 $C(3,0)$ 为顶点的三角形域的围界沿 $A B C A$ 方向, 则 $\oint_L(3 x-y) d x+(x-2 y) d y=$.
$\text{A.}$ -8
$\text{B.}$ 0
$\text{C.}$ 8
$\text{D.}$ 20
设函数 $f(x)=(1-\cos x)(2-\cos x) \cdots(n-\cos x)$, 则 $f^{\prime \prime}(0)=$
$\text{A.}$ $(n-1)$ !.
$\text{B.}$ $n !$.
$\text{C.}$ $(n+1)$ !.
$\text{D.}$ 0
设函数 $f(x)$ 满足 $f(0)=0$, 则 $f(x)$ 在 $x=0$ 处可导的充分必要条件为
$\text{A.}$ $\lim _{h \rightarrow 0} \frac{f(\tan h-h)}{h^3}$ 存在.
$\text{B.}$ $\lim _{h \rightarrow 0} \frac{f(\ln (1+h)-h)}{h^2}$ 存在.
$\text{C.}$ $\lim _{h \rightarrow 0} \frac{f(\arctan h-h)}{h}$ 存在.
$\text{D.}$ $\lim _{h \rightarrow 0} \frac{f(h)-f(-h)}{h}$ 存在.