单选题 (共 2 题 ),每题只有一个选项正确
已知函数 $f(x), g(x)$ 可导, 且 $f^{\prime}(x)>0, g^{\prime}(x) < 0$, 则
$\text{A.}$ $\int_{-1}^0 f(x) g(x) \mathrm{d} x>\int_0^1 f(x) g(x) \mathrm{d} x$.
$\text{B.}$ $\int_{-1}^0|f(x) g(x)| \mathrm{d} x>\int_0^1|f(x) g(x)| \mathrm{d} x$.
$\text{C.}$ $\int_{-1}^0 f[g(x)] \mathrm{d} x>\int_0^1 f[g(x)] \mathrm{d} x$.
$\text{D.}$ $\int_{-1}^0 f[f(x)] \mathrm{d} x>\int_0^1 g[g(x)] \mathrm{d} x$.
$\lim _{x \rightarrow \infty} \frac{3 x-5}{x^3 \sin \frac{1}{x^2}}=$
$\text{A.}$ 0
$\text{B.}$ 3
$\text{C.}$ $-\frac{3}{8}$.
$\text{D.}$ 1
填空题 (共 1 题 ),请把答案直接填写在答题纸上
(1) $\lim _{x \rightarrow \infty}\left(\frac{x+3}{x+2}\right)^{2 x-1}=$