一、填空题 (共 4 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
曲线 $y=x \sin x+2 \cos x\left(-\frac{\pi}{2} < x < 2 \pi\right)$ 的拐点是
$y=x \ln \left(\mathrm{e}+\frac{1}{x^2}\right)$ 的斜渐近线为。
设函数 $f(x)$ 在 $x=1$ 的某一邻域内可微, 且满足
$
f(1+x)-3 f(1-x)=4+2 x+o(x),
$
其中 $o(x)$ 是当 $x \rightarrow 0$ 时 $x$ 的高阶无穷小, 则曲线 $y=f(x)$ 在点 $(1, f(1))$ 处的切线方程为
$\lim _{x \rightarrow 3} \dfrac{\sqrt{x^3+9}-6}{2-\sqrt{x^3-23}}=$
二、解答题 ( 共 12 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求函数 $f(x, y)=x^3+8 y^3-x y$ 的最大值
设 $f(x)$ 在 $x=0$ 处二阶可导, 且 $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1, \lim _{x \rightarrow 0}\left(\frac{f(x)}{\sin x}\right)^{\frac{1}{f(x)}}=\sqrt{e}$, 求 $f^{\prime \prime}(0)$ 的 值.
设 $y=y(x)$ 由 $x^3+3 x^2 y-2 y^3=2$ 确定, 求 $y(x)$ 的极值.
求函数 $f(x)=(1-x) \sqrt{|x|}$ 在 $(-1,1)$ 的极值点和极值.
求曲线 $x^4+x^2 y-y^3=1$ 在点 $(1,1)$ 处的切线方程.
已知函数 $f(x)$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=0, f(1)=1$. 证明:
(1) 存在 $x_0 \in(0,1)$, 使得 $f\left(x_0\right)=1-x_0$;
(2) 存在两个不同的点 $x_1, x_2 \in(0,1)$, 使得 $f^{\prime}\left(x_1\right) f^{\prime}\left(x_2\right)=1$.
设 $b>a>0$, 证明: $\frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$
已知函数 $f(x)=\frac{x^3}{(1+x)^2}+3$, 请列表给出: 函数 $f(x)$ 的增减区间、凹凸区间、极值点以及图像的拐点; 并给出函数 $f(x)$ 的所有渐近线.
设 $f(x)$ 在 $[0,1]$ 上可导且 $f(0)>0$, $f(1)>0, \int_0^1 f(x) \mathrm{d} x=0$. 证明:
(1) $f(x)$ 在 $[0,1]$ 上至少有两个零点;
(2) 在 $(0,1)$ 内至少存在一点 $\xi$, 使得 $f^{\prime}(\xi)+3 f^3(\xi)=0$.
设 $f(x)$ 在 $[a, b]$ 上可导, 且满足 $f_{+}^{\prime}(a) < c < f_{-}^{\prime}(b)$, 证明: 存在 $\xi \in(a, b)$, 使得 $f^{\prime}(\xi)=c$.