华中科技大学2023年数学分析



解答题 (共 7 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
计算积分
$$
\int_0^{+\infty} \mathrm{e}^{-\frac{1}{4 s}} s^{-\frac{3}{2}} \mathrm{e}^{-s} \mathrm{~d} s
$$

判断下列积分的正负, 并给出理由
$$
\int_0^{2 \pi} e^{-x^2} \cos x d x
$$

求极限
$$
\lim _{\substack{x_0 \rightarrow 0 \\ x_1 \rightarrow+\infty}} I\left(x_0, x_1\right)=\iint_S \frac{\mathrm{e}^{-x^2}}{\sqrt{y^2+z^2}} \mathrm{~d} y \mathrm{~d} z
$$

其中 $S$ 由 $x=y^2+z^2$ 和 $x=x_0, x=x_1\left(a>0, x_0 < x_1\right)$ 所围成, 方向取外侧.

求解以下问题
(1). 证明方程 $(x+1)^{x+1}=\mathrm{e} \cdot x^x$ 只有唯一正实根
(2). 若 $f(x)$ 二阶可导, $p(x)=x-x^2$,证明:
$$
\int_k^{k+1} f(x) \mathrm{d} x=\frac{f(k+1)+f(k)}{2}-\int_k^{k+1} f^{\prime \prime}(x)p(x-[x])dx
$$
其中 $[x]$ 为取整函数.
(3) 若 $\beta$ 为(1)中方程的正实根,计算
$$
\lim _{n \rightarrow+\infty}\left(\beta+\frac{1}{n}\right)\left(\beta+\frac{2}{n}\right) \cdots\left(\beta+\frac{n}{n}\right)
$$

证明下列问题
(1). $\forall x>0, y \in R$, 则有 $x y < x \ln x-x+\mathrm{e}^y$;
(2). $\sum_{k=0}^n C_\alpha^k C_\beta^{n-k}=C_{\alpha+\beta}^n$, 其中
$$
C_\alpha^k=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k !}, C_\alpha^0=1
$$

求证
$$
\lim _{n \rightarrow+\infty}\left(\int_0^1\left(a+x^n\right) f(x) \mathrm{d} x\right)^{\frac{1}{n}}=1+a
$$

设 $f(x)$ 在 $(-\infty,+\infty)$ 上可导, 若
$
f(x)=f(x+2 k)=f(x+b)
$
其中 $k$ 为正整数, $b$ 为正无理数, 则利用傅立叶级数证明 $f(x)$ 为一常数.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

热点推荐

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。