解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $A=\left[\begin{array}{llll}2 & 1 & 1 & 2 \\ 0 & 1 & 3 & 1 \\ 1 & a & b & 1\end{array}\right], b=\left[\begin{array}{c}0 \\ 1 \\ 0\end{array}\right]$, 已知 $\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right]$ 是线性方程组 $A X=b$ 的一个解, 求线性方程组 $A X=b$ 的通解.
已知向量组 $\alpha_1=\left[\begin{array}{llll}1 & 2 & 1 & 0\end{array}\right]^{ T }, \alpha_2=\left[\begin{array}{llll}1 & 3 & 2 & -1\end{array}\right]^{ T }$,
$$
\alpha_3=\left[\begin{array}{llll}
1 & a & 0 & 1
\end{array}\right]^{T}, \alpha_4=\left[\begin{array}{llll}
2 & 7 & 3 & a-2
\end{array}\right]^{T},
$$
$\beta=\left[\begin{array}{llll}3 & 8 & 4 & b-1\end{array}\right]^{ T }$, 讨论 $a, b$ 为何值时 $\beta$ 可由向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 唯一线性表示; 能线性表示但不唯一; 不能线性表示.
已知二次型 $f\left(x_1, x_2, x_3\right)=3 x_2^2-2 x_1 x_2+8 x_1 x_3-2 x_2 x_3$,
(1) 用正交变换 $X=P Y$ 将二次型化为标准形(求出正交矩阵 $P$ );
(2) 说明方程 $f\left(x_1, x_2, x_3\right)=1$ 在几何上表示什么图形.