查看原题
已知随机变量 $X_1$ 与 $X_2$ 的分布函数分别为 $F_1(x)$ 与 $F_2(x)$. 我们假设: 如果 $X_i$ 为离散型随机变量, 其概率分布为 $X_i \sim\left(\begin{array}{cc}0 & 1 \\ 1-p_i & p_i\end{array}\right)$ (即 $X_i$ 服从参数为 $p_i$ 的 $0-1$ 分布, $0 < p_i < 1, i=1,2$ ).如果 $X_i$ 为连续型随机变量, 其概率密度为 $f_i(x)(i=1,2)$, 已知 $F_1(x) \leqslant F_2(x)$, 则
A. $p_1 \leqslant p_2$.     B. $p_1 \geqslant p_2$.     C. $f_1(x) \leqslant f_2(x)$.     D. $f_1(x) \geqslant f_2(x)$.         
不再提醒