设 $A=\left(a_{k j}\right)_{3 \times 3}$ 是3阶实方阵, $|A| \neq 0$, 记 $D(x)=\left(a_{k j}+x\right)_{3 \times 3}$及 $g(x)=\operatorname{det} D(x)$ 。(1)试求导数 $g^{\prime}(x)$ 并证明: $g^{\prime}(0)=|A| \alpha^T\left(A^{-1}\right) \alpha$, 其中向量 $\alpha^T=(1,1,1)$;
(2) 若 $A=\left(\begin{array}{lll}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right)$, 求 $g^{\prime}(0)$ 。