查看原题
函数 $f(x)$ 在 $(0,+\infty)$ 上有一阶连续导数, 且对任意的 $x \in(0,+\infty)$满足 $x \int_0^1 f(t x) d t=2 \int_0^x f(t) d t+x f(x)+x^3$, 且 $f(1)=0$, 求 $f(x)$.
                        
不再提醒