清空
下载
撤销
重做
查看原题
设序列 $x_n$ 有界, 且 $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_n\right)=0$ 。
记 $\varlimsup_{n \rightarrow \infty} x_n=J, \varliminf_{n \rightarrow \infty} x_n=L .(J < L)$ 。
证明对 $[J, L]$ 中的任何实数都是 $x_n$ 中某子列的极限。
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒