设 $\boldsymbol{A}, \boldsymbol{B}$ 均为 $n(n \geqslant 2)$ 阶矩阵, 满足 $\boldsymbol{A}-\boldsymbol{B}-\boldsymbol{A} \boldsymbol{B}=k \boldsymbol{E}$, 则下列 $k$ 值中, 使 $r(\boldsymbol{A}+\boldsymbol{E})+r(\boldsymbol{B}-\boldsymbol{E})$ 最 小的是
A. -2
B. -1
C. 1
D. 2