设封闭曲面 $\Sigma_1: x^2+y^2+z^2=1, \Sigma_2: x^2+2 y^2+z^2=1, \Sigma_3:(x-1)^2+y^2+z^2=1, \Sigma_4: x^2+y^2+$ $(z-1)^2=1$ 均取外侧, 则第二类曲面积分 $I_i=\iint_{\Sigma_i} 4 \mathrm{~d} y \mathrm{~d} z+y z \mathrm{~d} z \mathrm{~d} x+3 x^2 \mathrm{~d} x \mathrm{~d} y(i=1,2,3,4)$ 中, 最大的是
A. $I_1$.
B. $I_2$.
C. $I_3$.
D. $I_4$.