查看原题
已知曲线 $C_{1}: y=\cos x, C_{2}: y=\sin \left(2 x+\frac{2 \pi}{3}\right)$, 则下面结论正确的是()
A. 把 $C_{1}$ 上各点的横坐标伸长到原来的 2 倍, 纵坐标不变, 再把得到的曲线 向右平移 $\frac{\pi}{6}$ 个单位长度, 得到曲线 $C_{2}$     B. 把 $C_{1}$ 上各点的横坐标伸长到原来的 2 倍, 纵坐标不变, 再把得到的曲线 向左平移 $\frac{\pi}{12}$ 个单位长度, 得到曲线 $C_{2}$     C. 把 $C_{1}$ 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍, 纵坐标不变, 再把得到的曲线向 右平移 $\frac{\pi}{6}$ 个单位长度, 得到曲线 $C_{2}$     D. 把 $C_{1}$ 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍, 纵坐标不变, 再把得到的曲线向 左平移 $\frac{\pi}{12}$ 个单位长度, 得到曲线 $C_{2}$         
不再提醒