清空
下载
撤销
重做
查看原题
设双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的右焦点为 $F$, 点 $O$ 为坐标原点, 过点 $F$ 的直线 $l$ 与 $C$ 的右支相交 于 $A, B$ 两点.
(1) 当直线 $l$ 与 $x$ 轴垂直时, $O A \perp O B$, 求 $C$ 的离心率;
(2) 当 $C$ 的焦距为 2 时, $\angle A O B$ 恒为锐角, 求 $C$ 的实轴长的取值范围.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒