查看原题
设 $f(x)$ 连续, 且 $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=1, \alpha(x)=\int_0^{\sqrt{x}} \frac{\ln \left(1+t^{+}\right)}{f(t)} d t, \beta(x)=\int_0^{\sin x} \frac{\sqrt{1+t^3}-1}{f(t)} d t$, 则当 $x \rightarrow 0^{+}$时, $\alpha(x)$ 是 $\beta(x)$ 的
A. 等价无穷小     B. 同阶但非等价的无穷小     C. 高阶无穷小     D. 低阶无穷小         
不再提醒