清空
下载
撤销
重做
查看原题
设总体 $X$ 的密度函数为
$$
f(x)= \begin{cases}\sqrt{\theta} x^{\sqrt{\theta}-1} & 0 < x < 1 \\ 0 & \text { 其它 }\end{cases}
$$
其中 $\theta>0$ 是末知参数, $\left(X_1, X_2, \cdots, X_n\right)$ 是从该总体中抽取 的一个样本. 求 $\theta$ 的最大似然估计量.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒