查看原题
已知抛物线 $x^2=2 p y$, 点 $P(2, 8)$ 在抛物线上, 直线 $y=k x+2$ 交 $C$ 于 $A, B$ 两点, $M$ 是线段 $A B$ 的中点, 过 $M$ 作 $x$ 轴的垂线交 $C$ 于点 $N$.
(1) 求点 $P$ 到抛物线焦点的距离;
(2) 是否存在实数 $k$ 使 $\overrightarrow{N A} \cdot \overrightarrow{N B}=0$, 若存在, 求 $k$ 的值; 若不存在, 说明理由.
                        
不再提醒