查看原题
设总体 $X$ 的分布函数为 $F(x)=\left\{\begin{array}{ll}1-\mathrm{e}^{-(x-\theta)^2}, & x \geqslant \theta, \\ 0, & x < \theta\end{array}(\theta>0\right.$ 为末知参数 $), X_1, X_2, \cdots$, $X_n$ 为来自总体 $X$ 的简单随机样本, $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$, 则 $\theta$ 的矩估计量 $\hat{\theta}=$
                        
不再提醒