设向量组 $\left\{\alpha_1, \alpha_2, \alpha_3\right\}$ 与 $\left\{\beta_1, \beta_2, \beta_3\right\}$ 是线性空间 $V$ 的两个基, $T$ 是线性空间 $V$ 上的线性变换, 若 $\alpha_1=\beta_1-\beta_2, \alpha_2=\beta_2-\beta_3, \alpha_3=2 \beta_3-\beta_1$, 且 $T\left(\alpha_1\right)=\beta_1+\beta_2, T\left(\alpha_2\right)=\beta_2+\beta_3, T\left(\alpha_3\right)=\beta_3+\beta_1$,
1)求由基 $\left\{\alpha_1, \alpha_2, \alpha_3\right\}$ 到基 $\left\{\beta_1, \beta_2, \beta_3\right\}$ 的过渡矩阵 $C$;
2)求线性变换 $T$ 在两个基 $\left\{\alpha_1, \alpha_2, \alpha_3\right\}$ 与 $\left\{\beta_1, \beta_2, \beta_3\right\}$ 下的矩阵 $A$ 与 $B$.