清空
下载
撤销
重做
查看原题
考虑二阶复方阵 $M(\mathbb{C})$ 组成的复线性空间, 方阵 $A=\left(\begin{array}{ll}7 & 2 \\ 3 & 7\end{array}\right)$ 以及线性变换 $\mathscr{B}$ : $M_2(\mathbb{C}) \rightarrow M_2(\mathbb{C})$ 满足 $\mathscr{B}(X)=A X-X A$, 其中 $X$ 为任意 2 阶方阵, 试证明: $\mathscr{B}$ 是可对角 化的线性变换.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒