查看原题
已知矩阵 $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right], B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$, 矩阵 $X$ 满足如 下矩阵表达式: $A X A+B X B=A X B+B X A+E$, , 其中 $E$ 为三阶单位矩阵, 求矩阵 $X$.
                        
不再提醒