查看原题
已知三维向量 $\alpha_1=\left[\begin{array}{l}a_1 \\ a_2 \\ a_3\end{array}\right], \alpha_2=\left[\begin{array}{l}b_1 \\ b_2 \\ b_3\end{array}\right], \alpha_3=\left[\begin{array}{c}c_1 \\ c_2 \\ c_3\end{array}\right]$, 则三条直 线 $\left\{\begin{array}{l}l_1: a_1 x+b_1 y=c_1 \\ l_2: a_2 x+b_2 y=c_2 \\ l_3: a_3 x+b_3 y=c_3\end{array}\right.$ (其中 $a_i^2+b_i^2 \neq 0, i=1,2,3$ )交于 一点的充要条件是
A. $\alpha_1, \alpha_2, \alpha_3$ 线性相关     B. $\alpha_1, \alpha_2, \alpha_3$ 线性无关     C. $r\left(\alpha_1, \alpha_2\right)=r\left(\alpha_1, \alpha_2, \alpha_3\right)$     D. $\alpha_1, \alpha_2$ 线性无关, $\alpha_1, \alpha_2, \alpha_3$ 线性相关         
不再提醒