查看原题
设$a_{1}>0$,$a_{n 1}= \ln (1 a_{n})(n=1,2, \dotsc )$.
(1)证明: $\lim \limits_ {n \rightarrow \infty }a_{n}$ 存在,并求此极限;
(2)求 $\lim \limits_ {n \rightarrow \infty } \dfrac {a_{n 1}-a_{n}}{a_{n}a_{n 1}}$.
                        
不再提醒