查看原题
微分方程 $y^{\prime \prime}+2 y^{\prime}-3 y=\mathrm{e}^x$ 的通解为
A. $C_1 \mathrm{e}^{-3 x}+C_2 \mathrm{e}^x-\frac{1}{4} \mathrm{e}^x$.     B. $C_1 \mathrm{e}^{-3 x}+C_2 \mathrm{e}^x-\frac{1}{4} x \mathrm{e}^x$.     C. $C_1 \mathrm{e}^{-3 x}+C_2 \mathrm{e}^x+\frac{1}{4} \mathrm{e}^x$.     D. $C_1 \mathrm{e}^{-3 x}+C_2 \mathrm{e}^x+\frac{1}{4} x \mathrm{e}^x$.         
不再提醒