查看原题
$n$ 维向量组 ${\alpha}_{1}, {\alpha}_{2}, \cdots, {\alpha}_{s}(3 \leqslant s \leqslant n)$ 线性无关的充分必要条件是 (  )
A. 存在一组不全为零的数 $k_{1}, k_{2}, \cdots, k_{s}$, 使 $k_{1} {\alpha}_{1}+k_{2} {\alpha}_{2}+\cdots+k_{s} {\alpha}_{s} \neq \mathbf{0}$.     B. ${\alpha}_{1}, {\alpha}_{2}, \cdots, {\alpha}_{s}$ 中任意两个向量都线性无关.     C. ${\alpha}_{1}, {\alpha}_{2}, \cdots, {\alpha}_{s}$ 中存在一个向量,它不能用其余向量线性表出.     D. ${\alpha}_{1}, {\alpha}_{2}, \cdots, {\alpha}_{s}$ 中任意一个向量都不能用其余向量线性表出.         
不再提醒