设 $f(x)$ 在 $[0,+\infty)$ 上有连续导数, 且 $f(0)>0, f^{\prime}(x) \geqslant 0$, 若 $F(x)=f(x)+f^{\prime}(x)$, 则 $\int_0^{+\infty} \frac{1}{f(x)} \mathrm{d} x$ 收敛是 $\int_0^{+\infty} \frac{1}{F(x)} \mathrm{d} x$ 收敛的
A. 必要非充分条件.
B. 充分非必要条件.
C. 充分必要条件.
D. 既非充分也非必要条件.