清空
下载
撤销
重做
查看原题
已知 $\triangle A B C$ 的内角 $A, B, C$ 的对边分别为 $a, b, c$. 且 $b \sin B-a \sin A=(\sqrt{2} b-c) \sin (A+B)$.
(1) 求 $A$ 的大小;
(2) 过点 $C$ 作 $C D / / B A$, 在梯形 $A B C D$ 中, $B C=4, C D=3 \sqrt{3}, \angle A B C=120^{\circ}$, 求 $A D$ 的 长.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒