查看原题
设 $\boldsymbol{A}$ 是 $m \times n$ 矩阵, $\boldsymbol{x}=\left(x_1, x_2, \cdots, x_n\right)^{\mathrm{T}}$, 则下列说法中错误的是
A. 如果对任意 $m$ 维列向量 $\boldsymbol{b}$, 方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ 有解, 则 $m \geqslant n$     B. 如果 $r(A)=m$, 则对任意 $m$ 维列向量 $\boldsymbol{b}$, 方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ 有解     C. 对任意 $m$ 维列向量 $\boldsymbol{b}$, 方程组 $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{b}$ 有解     D. 如果 $r(\boldsymbol{A})=n$, 则对任意 $n$ 维列向量 $\boldsymbol{b}$, 方程组 $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ 有解         
不再提醒