查看原题
设 $f(x)=\left\{\begin{array}{ll}x+1, & 0 \leqslant x \leqslant \pi, \\ 0, & -\pi \leqslant x < 0,\end{array} S(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n \dot{x}\right)\right.$ 是 $f(x)$ 以 $2 \pi$ 为周期的傅里叶级数, 则 $\sum_{n=1}^{\infty} a_n=$
A. $-\frac{\pi}{4}$.     B. $\frac{\pi}{4}$.     C. $-\frac{\pi}{2}$.     D. $\frac{\pi}{2}$.         
不再提醒