查看原题
设连续型随机变量 X1,X2 的概率密度分别为 f1(x),f2(x), 其分布函数分别为 F1(x),F2(x), 记 g1(x)=f1(x)F2(x)+f2(x)F1(x),g2(x)=f1(x)F1(x)+f2(x)F2(x),g3(x)=12[f1(x)+ f2(x)],g4(x)=f1(x)f2(x) ,则 g1(x),g2(x),g3(x),g4(x) 这 4 个函数中一定能作为概率密度的共有
A. 1 个.     B. 2 个.     C. 3 个.     D. 4 个.         
不再提醒