查看原题
设 $y=y(x)$ 由 $\left\{\begin{array}{l}x=\ln \left(1+t^2\right), \\ y=\int_1^t \frac{u \sin u^2}{1+u^2} d u\end{array}\right.$ 确定, 则 $\left.\frac{ d ^2 y}{d x^2}\right|_{t=1}=$
                        
不再提醒