设函数 $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处连续,则下列命题中, 正确的是 ( )
A. 若 $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处沿 $(1,0)$ 与沿 $(-1,0)$ 的方向导数均存在, 则偏导数 $f_x^{\prime}\left(x_0, y_0\right)$存在.
B. 若偏导数 $f_x^{\prime}\left(x_0, y_0\right)$ 存在,则 $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处沿 $(-1,0)$ 的方向导数等于 $-f_x^{\prime}\left(x_0, y_0\right)$.
C. 若偏导数 $f_x^{\prime}\left(x_0, y_0\right), f_y^{\prime}\left(x_0, y_0\right)$ 均存在, 则 $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处沿任意方向的方向导数均存在。
D. 若 $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处沿任意方向的方向导数均存在, 则 $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处的偏导数均存在.