下列命题中正确的是
A. 若向量组 $\alpha_1, \alpha_2, \ldots, \alpha_m(m>1)$ 线性相关,则任一向量 $\alpha_i(1 \leq i \leq m)$ 可由其余向量线性表出.
B. 若 有 不 全 为 0 的 数 $\lambda_1, \lambda_2, \ldots, \lambda_m \quad(m>1)$ ,使 $i_1 \alpha_1+\lambda_2 \alpha_2+\cdots+\lambda_m \alpha_m+\lambda_1 \beta_1+\lambda_2 \beta_2+\cdots+\lambda_m \beta_m=o$ 成立,则向量组 $\alpha_1, \alpha _2, \ldots, \alpha _m$ 线性相关,向量组 $\beta _1, \beta _2, \ldots, \beta _m$ 亦线性相关.
C. 若 $\alpha _1, \alpha _2, \ldots, \alpha _m( m >1)$ 中任意两个向量线性无关,则 $\alpha _1, \alpha _2, \ldots, \alpha _m$ 线性无关.
D. 若向量组 $\alpha _1, \alpha _2, \ldots, \alpha _m(m>1)$ 中任意一个向量都不能用其余向量线性表出,则晌量组 $\alpha _1, \alpha , \ldots, \alpha _m$ 线性无关.