查看原题
设 $f(x, y)$ 连续, 且 $f(x, y)=x y+\iint_D f(u, v) d u d v$, 其中 $D$ 是由 $y=0, y=x^2, x=1$所围成的区域,则 $f(x, y)$ 等于
A. $x y$.     B. $2 x y$.     C. $x y+\frac{1}{8}$.     D. $x y+1$.         
不再提醒