查看原题
设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义, 且 $\lim _{x \rightarrow 0} f(x)=0$, 则
A. 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0$ 时, $f(x)$ 在 $x=0$ 处可导.     B. 当 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}=0$ 时, $f(x)$ 在 $x=0$ 处可导.     C. 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0$.     D. 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}=0$.         
不再提醒