把 $x \rightarrow 0^{+}$时的无穷小量 $\alpha=\int_0^x \cos t^2 d t, \beta=\int_0^{x^2} \tan \sqrt{t} d t, $ $ \gamma=\int_0^{\sqrt{x}} \sin t^3 d t$
排列起来,使排在后面的是前一个的高阶无穷小, 则正确的排列次序是
A. $\alpha, \beta, \gamma$.
B. $\alpha, \gamma, \beta$.
C. $\beta, \alpha, \gamma$.
D. $\beta, \gamma, \alpha$.