查看原题
设 $f(x)$ 在 $[0,1]$ 上二阶可导, 且 $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1, \lim _{x \rightarrow 1} \frac{f(x)}{x-1}=2$. 证明:
(1) $\exists \xi \in(0,1)$, 使 $f(\xi)=0$;
(2) $\exists \eta \in(0,1)$, 使 $f^{\prime \prime}(\eta)-f(\eta)=0$.
                        
不再提醒