查看原题
设 $f(x)=\left\{\begin{array}{ll}\frac{1}{1+\mathrm{e}^x}, & x < 0, \\ \frac{x}{\mathrm{e}^{-x^2}-2}, & x \geqslant 0,\end{array}\right.$ 则 $\int_0^2 f(x-1) \mathrm{d} x=$
                        
不再提醒