查看原题
设 $f(x)$ 在 $[0,2]$ 上连续, 在 $(0,2)$ 可导, 且 $2 f(0)=\int_0^2 f(x) d x$ 。 证明:
(1) $\exists \eta \in(0,2)$, 使 $f(\eta)=f(0)$;
(2) 对任意实数 $\lambda, \exists \xi \in(0,2)$, 使 $f^{\prime}(\xi)+\lambda(f(\xi)-f(0))=0$
                        
不再提醒