已知函数 $f(x, y)=\left\{\begin{array}{ll}\left(x^2+y^2\right) \sin \frac{1}{x y}, & x y \neq 0, \\ 0, & x y=0\end{array}\right.$ ,则在点 $(0,0)$ 处()
A. $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 可微
B. $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 不可微
C. $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 可微
D. $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 不可微