清空
下载
撤销
重做
查看原题
设有界区域 $\Omega$ 由平面 $2 x+y+2 z=2$ 与三个坐标平面围成, $\Sigma$ 为 $\Omega$ 整个表面的外侧,计算曲面积分
$$
I=\iint_{\Sigma}\left(x^2+1\right) \mathrm{d} y \mathrm{~d} z-2 y \mathrm{~d} z \mathrm{~d} x+3 z \mathrm{~d} x \mathrm{~d} y
$$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒