查看原题
设 $a$ 为正整数, $f_a(x)=x^4+a x^2+1$. 定义集合
$P_a=\left\{p \mid p\right.$ 为素数, 且存在正整数 $k$ 使得 $f_a(2 k)$ 是 $p$ 的倍数 $\}$ 。
(1) 证明: 对任意正整数 $a, P_a$ 为无限集;
(2) 若 $P_a$ 的任意两个元素之差是 8 的倍数, 求正整数 $a$ 的最小值. (杨晓鸣供题)
                        
不再提醒