清空
下载
撤销
重做
查看原题
设 $m, n$ 是自然数, $a_0, a_1, \cdots, a_m, b_0, b_1, \cdots, b_n$ 是非负实数. 对 $0 \leq k \leq$ $m+n$, 记 $c_k=\max _{i+j=k} a_i b_j$. 求证:
$$
\frac{c_0+c_1+\cdots+c_{m+n}}{m+n+1} \geq \frac{a_0+a_1+\cdots+a_m}{m+1} \cdot \frac{b_0+b_1+\cdots+b_n}{n+1} .
$$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒