清空
下载
撤销
重做
查看原题
设 $\left\{a_n\right\}$ 是由正数组成的等比数列, $S_n$ 是其前 $n$ 项和.
(1) 证明 $\frac{\lg S_n+\lg S_{n+2}}{2} < \lg S_{n+1}$ ;
(2) 是否存在常数 $c>0$, 使得 $\frac{\lg \left(S_n-c\right)+\lg \left(S_{n+2}-c\right)}{2}=\lg \left(S_{n+1}-c\right)$ 成立? 并证明你的结论.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒