查看原题
设 $\left\{\begin{array}{l}x=\mathrm{e}^{-t}, \\ y=\int_0^t \ln \left(1+u^2\right) \mathrm{d} u\end{array}\right.$ ,求 $\left.\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}\right|_{t=0}=$
                        
不再提醒