查看原题
设 $A, B$ 均为 2 阶矩阵, $A^*, B^*$ 分别为 $A, B$ 的伴随矩阵。若 $|A|=2,|B|=3$ ,则分块矩阵 $\left(\begin{array}{ll}O & A \\ B & O\end{array}\right)$ 的伴随矩阵为
A. $\left(\begin{array}{cc}O & 3 B^* \\ 2 A^* & O\end{array}\right)$     B. $\left(\begin{array}{cc}O & 2 B^* \\ 3 A^* & O\end{array}\right)$     C. $\left(\begin{array}{cc}O & 3 A^* \\ 2 B^* & O\end{array}\right)$     D. $\left(\begin{array}{cc}O & 2 A^* \\ 3 B^* & O\end{array}\right)$         
不再提醒