查看原题
设函数 $f$ 连续,若 $F(u, v)=\iint_{D_{u v}} \frac{f\left(x^2+y^2\right)}{\sqrt{x^2+y^2}} \mathrm{~d} x \mathrm{~d} y$ ,其中
$$
\begin{aligned}
& D_{u v}: x^2+y^2=1, x^2+y^2=u^2, y=0, y=x \arctan v \\
& (u>1, v>0) \text { ,则 } \frac{\partial F}{\partial u}=
\end{aligned}
$$
A. $v f\left(u^2\right)$     B. $\frac{v}{u} f\left(u^2\right)$     C. $v f(u)$     D. $\frac{v}{u} f(u)$         
不再提醒