查看原题
设 $X_1, X_2, \cdots, X_n$ 是来自总体 $N\left(\mu, \sigma^2\right)$ 的简单随机样本, 记
$$
\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i, \quad S^2=\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2, \quad T=\bar{X}
$$
(1) 证明 $T$ 是 $\mu^2$ 的无偏估计量;
(2) 当 $\mu=0, \sigma=1$ 时,求 $D(T)$.
                        
不再提醒