查看原题
设函数 $f(u)$ 在 $(0,+\infty)$ 内具有二阶导数, $z=f\left(\sqrt{x^2+y^2}\right)$ 满足等式 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$.
(1)验证 $f^{\prime \prime}(u)+\frac{f^{\prime}(u)}{u}=0$
(2)若 $f(1)=0, f^{\prime}(1)=1$ ,求函数 $f(u)$ 的表达式.
                        
不再提醒